EasterBlack-owned or founded brands at TargetGroceryClothing, Shoes & AccessoriesBabyHomeFurnitureKitchen & DiningOutdoor Living & GardenToysElectronicsVideo GamesMovies, Music & BooksSports & OutdoorsBeautyPersonal CareHealthPetsHousehold EssentialsArts, Crafts & SewingSchool & Office SuppliesParty SuppliesLuggageGift IdeasGift CardsClearanceTarget New ArrivalsTarget Finds#TargetStyleTop DealsTarget Circle DealsWeekly AdShop Order PickupShop Same Day DeliveryRegistryRedCardTarget CircleFind Stores

Sponsored

Introduction to Machine Learning with Python - by Andreas C Müller & Sarah Guido (Paperback)

Introduction to Machine Learning with Python - by  Andreas C Müller & Sarah Guido (Paperback) - 1 of 1
$59.99 when purchased online
Target Online store #3991

About this item

Highlights

  • Machine learning has become an integral part of many commercial applications and research projects, but this field is not exclusive to large companies with extensive research teams.
  • About the Author: Andreas Müller received his PhD in machine learning from the University of Bonn.
  • 398 Pages
  • Computers + Internet, Programming Languages

Description



Book Synopsis



Machine learning has become an integral part of many commercial applications and research projects, but this field is not exclusive to large companies with extensive research teams. If you use Python, even as a beginner, this book will teach you practical ways to build your own machine learning solutions. With all the data available today, machine learning applications are limited only by your imagination.

Youâ ll learn the steps necessary to create a successful machine-learning application with Python and the scikit-learn library. Authors Andreas MÃ1/4ller and Sarah Guido focus on the practical aspects of using machine learning algorithms, rather than the math behind them. Familiarity with the NumPy and matplotlib libraries will help you get even more from this book.

With this book, youâ ll learn:

  • Fundamental concepts and applications of machine learning
  • Advantages and shortcomings of widely used machine learning algorithms
  • How to represent data processed by machine learning, including which data aspects to focus on
  • Advanced methods for model evaluation and parameter tuning
  • The concept of pipelines for chaining models and encapsulating your workflow
  • Methods for working with text data, including text-specific processing techniques
  • Suggestions for improving your machine learning and data science skills



About the Author



Andreas Müller received his PhD in machine learning from the University of Bonn. After working as a machine learning researcher on computer vision applications at Amazon for a year, he recently joined the Center for Data Science at the New York University. In the last four years, he has been maintainer and one of the core contributor of scikit-learn, a machine learning toolkit widely used in industry and academia, and author and contributor to several other widely used machine learning packages. His mission is to create open tools to lower the barrier of entry for machine learning applications, promote reproducible science and democratize the access to high-quality machine learning algorithms.

Sarah is a data scientist who has spent a lot of time working in start-ups. She loves Python, machine learning, large quantities of data, and the tech world. She is an accomplished conference speaker, currently resides in New York City, and attended the University of Michigan for grad school.

Dimensions (Overall): 9.1 Inches (H) x 6.9 Inches (W) x .7 Inches (D)
Weight: 1.3 Pounds
Suggested Age: 22 Years and Up
Sub-Genre: Programming Languages
Genre: Computers + Internet
Number of Pages: 398
Publisher: O'Reilly Media
Theme: Python
Format: Paperback
Author: Andreas C Müller & Sarah Guido
Featured book lists: Textbooks
Language: English
Street Date: November 15, 2016
TCIN: 82945120
UPC: 9781449369415
Item Number (DPCI): 315-00-0694
Origin: Made in the USA or Imported
If the item details above aren’t accurate or complete, we want to know about it.

Shipping details

Estimated ship dimensions: 0.7 inches length x 6.9 inches width x 9.1 inches height
Estimated ship weight: 1.3 pounds
We regret that this item cannot be shipped to PO Boxes.
This item cannot be shipped to the following locations: American Samoa (see also separate entry under AS), Guam (see also separate entry under GU), Northern Mariana Islands, Puerto Rico (see also separate entry under PR), United States Minor Outlying Islands, Virgin Islands, U.S., APO/FPO

Return details

This item can be returned to any Target store or Target.com.
This item must be returned within 30 days of the date it was purchased in store, shipped, delivered by a Shipt shopper, or made ready for pickup.
See the return policy for complete information.

Related Categories

Get top deals, latest trends, and more.

Privacy policy

Footer

About Us

About TargetCareersNews & BlogTarget BrandsBullseye ShopSustainability & GovernancePress CenterAdvertise with UsInvestorsAffiliates & PartnersSuppliersTargetPlus

Help

Target HelpReturnsTrack OrdersRecallsContact UsFeedbackAccessibilitySecurity & FraudTeam Member Services

Stores

Find a StoreClinicPharmacyOpticalMore In-Store Services

Services

Target Circle™Target Circle™ CardTarget Circle 360™Target AppRegistrySame Day DeliveryOrder PickupDrive UpFree 2-Day ShippingShipping & DeliveryMore Services
PinterestFacebookInstagramXYoutubeTiktokTermsCA Supply ChainPrivacyCA Privacy RightsYour Privacy ChoicesInterest Based AdsHealth Privacy Policy