EasterBlack-owned or founded brands at TargetGroceryClothing, Shoes & AccessoriesBabyHomeFurnitureKitchen & DiningOutdoor Living & GardenToysElectronicsVideo GamesMovies, Music & BooksSports & OutdoorsBeautyPersonal CareHealthPetsHousehold EssentialsArts, Crafts & SewingSchool & Office SuppliesParty SuppliesLuggageGift IdeasGift CardsClearanceTarget New ArrivalsTarget Finds#TargetStyleTop DealsTarget Circle DealsWeekly AdShop Order PickupShop Same Day DeliveryRegistryRedCardTarget CircleFind Stores

Sponsored

Linear Algebra - by M Thamban Nair & Arindama Singh (Hardcover)

Linear Algebra - by  M Thamban Nair & Arindama Singh (Hardcover) - 1 of 1
$64.99 when purchased online
Target Online store #3991

About this item

Highlights

  • This book introduces the fundamental concepts, techniques and results of linear algebra that form the basis of analysis, applied mathematics and algebra.
  • About the Author: M. Thamban Nair is a professor of mathematics at the Indian Institute of Technology Madras, Chennai, India.
  • 341 Pages
  • Mathematics, Algebra

Description



Book Synopsis



This book introduces the fundamental concepts, techniques and results of linear algebra that form the basis of analysis, applied mathematics and algebra. Intended as a text for undergraduate students of mathematics, science and engineering with a knowledge of set theory, it discusses the concepts that are constantly used by scientists and engineers. It also lays the foundation for the language and framework for modern analysis and its applications.

Divided into seven chapters, it discusses vector spaces, linear transformations, best approximation in inner product spaces, eigenvalues and eigenvectors, block diagonalisation, triangularisation, Jordan form, singular value decomposition, polar decomposition, and many more topics that are relevant to applications. The topics chosen have become well-established over the years and are still very much in use. The approach is both geometric and algebraic. It avoids distraction from the main theme by deferring the exercises to theend of each section. These exercises aim at reinforcing the learned concepts rather than as exposing readers to the tricks involved in the computation. Problems included at the end of each chapter are relatively advanced and require a deep understanding and assimilation of the topics.



From the Back Cover



This book introduces the fundamental concepts, techniques and results of linear algebra that form the basis of analysis, applied mathematics and algebra. Intended as a text for undergraduate students of mathematics, science and engineering with a knowledge of set theory, it discusses the concepts that are constantly used by scientists and engineers. It also lays the foundation for the language and framework for modern analysis and its applications.

Divided into seven chapters, it discusses vector spaces, linear transformations, best approximation in inner product spaces, eigenvalues and eigenvectors, block diagonalisation, triangularisation, Jordan form, singular value decomposition, polar decomposition, and many more topics that are relevant to applications. The topics chosen have become well-established over the years and are still very much in use. The approach is both geometric and algebraic. It avoids distraction from the main theme by deferring the exercises to theend of each section. These exercises aim at reinforcing the learned concepts rather than as exposing readers to the tricks involved in the computation. Problems included at the end of each chapter are relatively advanced and require a deep understanding and assimilation of the topics.



Review Quotes




"This textbook is suitable for a course on linear algebra for students of mathematics, sciences and engineering. ... the material of the book is mostly suitable for a two-semester course for student of mathematics and it is also a useful introduction to functional analysis." (Michal Zajac, zbMath 1414.15001, 2019)

"It is a very well written book. It is clear that Nair and Singh put a lot of work into the text to make the concepts elaborate and lively at the same time. This book can build the confidence of a student majoring in mathematics, science, or engineering by building their critical thinking skills and problem-solving skills - not to mention practice with writing proofs." (Peter Olszewski, MAA Reviews, March, 8, 2019)




About the Author



M. Thamban Nair is a professor of mathematics at the Indian Institute of Technology Madras, Chennai, India. He completed his Ph.D. at the Indian Institute of Technology Bombay, Mumbai, India, in 1986. His research interests include functional analysis and operator theory, specifically spectral approximation, the approximate solution of integral and operator equations, regularization of inverse and ill-posed problems. He has published three books, including a textbook, Functional Analysis: A First Course (PHI Learning), and a text-cum-monograph, Linear Operator Equations: Approximation and Regularization (World Scientific), and over 90 papers in reputed journals and refereed conference proceedings. He has guided six Ph.D. students and is an editorial board member of the Journal of Analysis and Number Theory, and Journal of Mathematical Analysis. He is a life member of academic bodies such as Indian Mathematical Society and Ramanujan Mathematical Society.

Arindama Singh is a professor of mathematics at the Indian Institute of Technology Madras, Chennai, India. He completed his Ph.D. at the Indian Institute of Technology Kanpur, India, in 1990. His research interests include knowledge compilation, singular perturbation, mathematical learning theory, image processing, and numerical linear algebra. He has published five books, including Elements of Computation Theory (Springer), and over 47 papers in reputed journals and refereed conference proceedings. He has guided five Ph.D. students and is a life member of many academic bodies, including Indian Society for Industrial and Applied Mathematics, Indian Society of Technical Education, Ramanujan Mathematical Society, Indian Mathematical Society, and The Association of Mathematics Teachers of India

Dimensions (Overall): 9.21 Inches (H) x 6.14 Inches (W) x .81 Inches (D)
Weight: 1.48 Pounds
Suggested Age: 22 Years and Up
Number of Pages: 341
Genre: Mathematics
Sub-Genre: Algebra
Publisher: Springer
Theme: Linear
Format: Hardcover
Author: M Thamban Nair & Arindama Singh
Language: English
Street Date: August 2, 2018
TCIN: 91573035
UPC: 9789811309250
Item Number (DPCI): 247-34-1987
Origin: Made in the USA or Imported
If the item details above aren’t accurate or complete, we want to know about it.

Shipping details

Estimated ship dimensions: 0.81 inches length x 6.14 inches width x 9.21 inches height
Estimated ship weight: 1.48 pounds
We regret that this item cannot be shipped to PO Boxes.
This item cannot be shipped to the following locations: American Samoa (see also separate entry under AS), Guam (see also separate entry under GU), Northern Mariana Islands, Puerto Rico (see also separate entry under PR), United States Minor Outlying Islands, Virgin Islands, U.S., APO/FPO

Return details

This item can be returned to any Target store or Target.com.
This item must be returned within 90 days of the date it was purchased in store, shipped, delivered by a Shipt shopper, or made ready for pickup.
See the return policy for complete information.

Related Categories

Get top deals, latest trends, and more.

Privacy policy

Footer

About Us

About TargetCareersNews & BlogTarget BrandsBullseye ShopSustainability & GovernancePress CenterAdvertise with UsInvestorsAffiliates & PartnersSuppliersTargetPlus

Help

Target HelpReturnsTrack OrdersRecallsContact UsFeedbackAccessibilitySecurity & FraudTeam Member Services

Stores

Find a StoreClinicPharmacyOpticalMore In-Store Services

Services

Target Circle™Target Circle™ CardTarget Circle 360™Target AppRegistrySame Day DeliveryOrder PickupDrive UpFree 2-Day ShippingShipping & DeliveryMore Services
PinterestFacebookInstagramXYoutubeTiktokTermsCA Supply ChainPrivacyCA Privacy RightsYour Privacy ChoicesInterest Based AdsHealth Privacy Policy