Sponsored
Llms in Production - by Christopher Brousseau & Matt Sharp (Paperback)
$50.66 sale price when purchased online
$59.99 list price
Target Online store #3991
About this item
Highlights
- Goes beyond academic discussions deeply into the applications layer of Foundation Models.
- About the Author: Christopher Brousseau is a Staff MLE at JPMorganChase with a linguistics and localization background.
- 456 Pages
- Computers + Internet, Expert Systems
Description
Book Synopsis
Goes beyond academic discussions deeply into the applications layer of Foundation Models. This practical book offers clear, example-rich explanations of how LLMs work, how you can interact with them, and how to integrate LLMs into your own applications. Find out what makes LLMs so different from traditional software and ML, discover best practices for working with them out of the lab, and dodge common pitfalls with experienced advice. In LLMs in Production you will: - Grasp the fundamentals of LLMs and the technology behind them- Evaluate when to use a premade LLM and when to build your own
- Efficiently scale up an ML platform to handle the needs of LLMs
- Train LLM foundation models and finetune an existing LLM
- Deploy LLMs to the cloud and edge devices using complex architectures like PEFT and LoRA
- Build applications leveraging the strengths of LLMs while mitigating their weaknesses LLMs in Production delivers vital insights into delivering MLOps so you can easily and seamlessly guide one to production usage. Inside, you'll find practical insights into everything from acquiring an LLM-suitable training dataset, building a platform, and compensating for their immense size. Plus, tips and tricks for prompt engineering, retraining and load testing, handling costs, and ensuring security. Foreword by Joe Reis. Purchase of the print book includes a free eBook in PDF and ePub formats from Manning Publications. About the technology Most business software is developed and improved iteratively, and can change significantly even after deployment. By contrast, because LLMs are expensive to create and difficult to modify, they require meticulous upfront planning, exacting data standards, and carefully-executed technical implementation. Integrating LLMs into production products impacts every aspect of your operations plan, including the application lifecycle, data pipeline, compute cost, security, and more. Get it wrong, and you may have a costly failure on your hands. About the book LLMs in Production teaches you how to develop an LLMOps plan that can take an AI app smoothly from design to delivery. You'll learn techniques for preparing an LLM dataset, cost-efficient training hacks like LORA and RLHF, and industry benchmarks for model evaluation. Along the way, you'll put your new skills to use in three exciting example projects: creating and training a custom LLM, building a VSCode AI coding extension, and deploying a small model to a Raspberry Pi. What's inside - Balancing cost and performance
- Retraining and load testing
- Optimizing models for commodity hardware
- Deploying on a Kubernetes cluster About the reader For data scientists and ML engineers who know Python and the basics of cloud deployment. About the author Christopher Brousseau and Matt Sharp are experienced engineers who have led numerous successful large scale LLM deployments. Table of Contents 1 Words' awakening: Why large language models have captured attention
2 Large language models: A deep dive into language modeling
3 Large language model operations: Building a platform for LLMs
4 Data engineering for large language models: Setting up for success
5 Training large language models: How to generate the generator
6 Large language model services: A practical guide
7 Prompt engineering: Becoming an LLM whisperer
8 Large language model applications: Building an interactive experience
9 Creating an LLM project: Reimplementing Llama 3
10 Creating a coding copilot project: This would have helped you earlier
11 Deploying an LLM on a Raspberry Pi: How low can you go?
12 Production, an ever-changing landscape: Things are just getting started
A History of linguistics
B Reinforcement learning with human feedback
C Multimodal latent spaces
About the Author
Christopher Brousseau is a Staff MLE at JPMorganChase with a linguistics and localization background. He specializes in linguistically-informed NLP, especially with an international focus and has led successful ML and Data product initiatives at both startups and Fortune 500s. Matt Sharp is an engineer, former data scientist, and seasoned technology leader in MLOps. Has led many successful data initiatives for both startups and top-tier tech companies alike. Matt specializes in deploying, managing, and scaling machine learning models in production, regardless of what that production setting looks like.Dimensions (Overall): 9.14 Inches (H) x 7.4 Inches (W) x .93 Inches (D)
Weight: 1.68 Pounds
Suggested Age: 22 Years and Up
Sub-Genre: Expert Systems
Genre: Computers + Internet
Number of Pages: 456
Publisher: Manning Publications
Format: Paperback
Author: Christopher Brousseau & Matt Sharp
Language: English
Street Date: February 11, 2025
TCIN: 92609310
UPC: 9781633437203
Item Number (DPCI): 247-41-2046
Origin: Made in the USA or Imported
If the item details above aren’t accurate or complete, we want to know about it.
Shipping details
Estimated ship dimensions: 0.93 inches length x 7.4 inches width x 9.14 inches height
Estimated ship weight: 1.68 pounds
We regret that this item cannot be shipped to PO Boxes.
This item cannot be shipped to the following locations: American Samoa (see also separate entry under AS), Guam (see also separate entry under GU), Northern Mariana Islands, Puerto Rico (see also separate entry under PR), United States Minor Outlying Islands, Virgin Islands, U.S., APO/FPO
Return details
This item can be returned to any Target store or Target.com.
This item must be returned within 90 days of the date it was purchased in store, shipped, delivered by a Shipt shopper, or made ready for pickup.
See the return policy for complete information.