Sponsored
Power Electronics, a First Course - 2nd Edition by Ned Mohan & Siddharth Raju (Hardcover)
About this item
Highlights
- POWER ELECTRONICS A FIRST COURSE Enables students to understand power electronics systems, as one course, in an integrated electric energy systems curriculum Power Electronics A First Course provides instruction on fundamental concepts related to power electronics to undergraduate electrical engineering students, beginning with an introductory chapter and moving on to discussing topics such as switching power-poles, switch-mode dc-dc converters, and feedback controllers.
- About the Author: Ned Mohan, PhD, joined the University of Minnesota in 1975, where he is currently Oscar A. Schott Professor of Power Electronic Systems and Morse-Alumni Distinguished Professor.
- 352 Pages
- Technology, Power Resources
Description
About the Book
"Role of Power Electronics in Providing Sustainable Electric Energy As discussed in the introductory chapter of this textbook, power electronics is an enabling technology for powering information technology and making factory automation feasible. In addition, power electronics has a crucial role to play in providing sustainable electric energy. Most scientists now believe that carbon-based fuels for energy production con- tribute to climate change, which is a serious threat facing human civilization. In the United States, the Department of Energy reports that approximately 40% of all the energy consumed is first converted into electricity. Potentially, use of electric and plug-in hybrid cars, high speed rails, and so on may increase this to even 60%. Therefore, it is essential that we generate electricity from renewable sources such as wind and solar, which at present represent only slightly over 4%, build the next-generation smarter and robust grid to utilize renewable resources often in remote locations, and use electricity in more energy-efficient ways. Undoubtedly, using electricity efficiently and generating it from renewable sources are the twin pillars of sustainability, and as described in this textbook, power electronic systems are a key to them both! This textbook focuses on Power Electronic Systems as one of the topics in an integrated Electric Energy Systems curriculum consisting of Power Electronics, Power Systems and Electric Machines and Drives. This textbook follows a top-down systems- level approach to Power Electronics to highlight interrelationships between these sub- fields within this curriculum, and is intended to cover both the fundamentals and practical design in a single-semester course. This textbook follows a building-block approach to power electronics that allows an in-depth discussion of several important topics that are left out in a conventional course, for example, designing feedback control, power-factor-correction circuits, soft- switching, and Space-Vector PWM, which is a PWM technique, far superior to Sine- PWM, to name a few. Topics in this book are carefully sequenced to maintain continuity and student interest throughout the course. In a fast-paced course with proper student background, this book can be covered from front-to-back in one semester. However, the material is arranged in such a way that an instructor, to accommodate the students' background, can either omit an entire topic or cover it quickly to provide just an overview using the accompanying slides, without interrupting the flow"--Book Synopsis
POWER ELECTRONICS A FIRST COURSE
Enables students to understand power electronics systems, as one course, in an integrated electric energy systems curriculum
Power Electronics A First Course provides instruction on fundamental concepts related to power electronics to undergraduate electrical engineering students, beginning with an introductory chapter and moving on to discussing topics such as switching power-poles, switch-mode dc-dc converters, and feedback controllers.
The authors also cover diode rectifiers, power-factor-correction (PFC) circuits, and switch-mode dc power supplies. Later chapters touch on soft-switching in dc-dc power converters, voltage and current requirements imposed by various power applications, dc and low-frequency sinusoidal ac voltages, thyristor converters, and the utility applications of harnessing energy from renewable sources.
Power Electronics A First Course is the only textbook that is integrated with hardware experiments and simulation results. The simulation files are available on a website associated with this textbook. The hardware experiments will be available through a University of Minnesota startup at a low cost.
In Power Electronics A First Course, readers can expect to find detailed information on:
- Availability of various power semiconductor devices that are essential in power electronic systems, plus their switching characteristics and various tradeoffs
- Common foundational unit of various converters and their operation, plus fundamental concepts for feedback control, illustrated by means of regulated dc-dc converters
- Basic concepts associated with magnetic circuits, to develop an understanding of inductors and transformers needed in power electronics
- Problems associated with hard switching, and some of the practical circuits where this problem can be minimized with soft-switching
Power Electronics A First Course is an ideal textbook for Junior/Senior-Undergraduate students in Electrical and Computer Engineering (ECE). It is also valuable to students outside of ECE, such as those in more general engineering fields. Basic understanding of electrical engineering concepts and control systems is a prerequisite.
From the Back Cover
Enables students to understand power electronics systems, as one course, in an integrated electric energy systems curriculum
Power Electronics A First Course provides instruction on fundamental concepts related to power electronics to undergraduate electrical engineering students, beginning with an introductory chapter and moving on to discussing topics such as switching power-poles, switch-mode dc-dc converters, and feedback controllers.
The authors also cover diode rectifiers, power-factor-correction (PFC) circuits, and switch-mode dc power supplies. Later chapters touch on soft-switching in dc-dc power converters, voltage and current requirements imposed by various power applications, dc and low-frequency sinusoidal ac voltages, thyristor converters, and the utility applications of harnessing energy from renewable sources.
Power Electronics A First Course is the only textbook that is integrated with hardware experiments and simulation results. The simulation files are available on a website associated with this textbook. The hardware experiments will be available through a University of Minnesota startup at a low cost.
In Power Electronics A First Course, readers can expect to find detailed information on:
- Availability of various power semiconductor devices that are essential in power electronic systems, plus their switching characteristics and various tradeoffs
- Common foundational unit of various converters and their operation, plus fundamental concepts for feedback control, illustrated by means of regulated dc-dc converters
- Basic concepts associated with magnetic circuits, to develop an understanding of inductors and transformers needed in power electronics
- Problems associated with hard switching, and some of the practical circuits where this problem can be minimized with soft-switching
Power Electronics A First Course is an ideal textbook for Junior/Senior-Undergraduate students in Electrical and Computer Engineering (ECE). It is also valuable to students outside of ECE, such as those in more general engineering fields. Basic understanding of electrical engineering concepts and control systems is a prerequisite.
About the Author
Ned Mohan, PhD, joined the University of Minnesota in 1975, where he is currently Oscar A. Schott Professor of Power Electronic Systems and Morse-Alumni Distinguished Professor. He is a Fellow of the IEEE and a member of the National Academy of Engineering. He is also a Regents Professor at the University and Minnesota and has published six textbooks with Wiley.
Siddharth Raju is a Research Assistant Professor at the University of Minnesota and a co-author of Analysis and Control of Electric Drives: Simulations and Laboratory Implementation (2020). He is the founder of Sciamble Corp., a startup specializing in rapid real-time prototyping solutions.