EasterBlack-owned or founded brands at TargetGroceryClothing, Shoes & AccessoriesBabyHomeFurnitureKitchen & DiningOutdoor Living & GardenToysElectronicsVideo GamesMovies, Music & BooksSports & OutdoorsBeautyPersonal CareHealthPetsHousehold EssentialsArts, Crafts & SewingSchool & Office SuppliesParty SuppliesLuggageGift IdeasGift CardsClearanceTarget New ArrivalsTarget Finds#TargetStyleTop DealsTarget Circle DealsWeekly AdShop Order PickupShop Same Day DeliveryRegistryRedCardTarget CircleFind Stores

Sponsored

Financial Data Analytics with Machine Learning, Optimization and Statistics - (Wiley Finance) by Sam Chen & Ka Chun Cheung & Phillip Yam (Hardcover)

Financial Data Analytics with Machine Learning, Optimization and Statistics - (Wiley Finance) by  Sam Chen & Ka Chun Cheung & Phillip Yam (Hardcover) - 1 of 1
$58.75 sale price when purchased online
$75.00 list price
Target Online store #3991

About this item

Highlights

  • An essential introduction to data analytics and Machine Learning techniques in the business sector In Financial Data Analytics with Machine Learning, Optimization and Statistics, a team consisting of a distinguished applied mathematician and statistician, experienced actuarial professionals and working data analysts delivers an expertly balanced combination of traditional financial statistics, effective machine learning tools, and mathematics.
  • About the Author: YONGZHAO CHEN (SAM) [BSC(ACTUARSC) & PHD (HKU)] is currently an Assistant Professor at the Department of Mathematics, Statistics and Insurance, The Hang Seng University of Hong Kong.
  • 816 Pages
  • Business + Money Management, Finance
  • Series Name: Wiley Finance

Description



Book Synopsis



An essential introduction to data analytics and Machine Learning techniques in the business sector

In Financial Data Analytics with Machine Learning, Optimization and Statistics, a team consisting of a distinguished applied mathematician and statistician, experienced actuarial professionals and working data analysts delivers an expertly balanced combination of traditional financial statistics, effective machine learning tools, and mathematics. The book focuses on contemporary techniques used for data analytics in the financial sector and the insurance industry with an emphasis on mathematical understanding and statistical principles and connects them with common and practical financial problems. Each chapter is equipped with derivations and proofs--especially of key results--and includes several realistic examples which stem from common financial contexts. The computer algorithms in the book are implemented using Python and R, two of the most widely used programming languages for applied science and in academia and industry, so that readers can implement the relevant models and use the programs themselves.

This book can help readers become well-equipped with the following skills:

  • To evaluate financial and insurance data quality, and use the distilled knowledge obtained from the data after applying data analytic tools to make timely financial decisions
  • To apply effective data dimension reduction tools to enhance supervised learning
  • To describe and select suitable data analytic tools as introduced above for a given dataset depending upon classification or regression prediction purpose

The book covers the competencies tested by several professional examinations, such as the Predictive Analytics Exam offered by the Society of Actuaries, and the Institute and Faculty of Actuaries' Actuarial Statistics Exam.

Besides being an indispensable resource for senior undergraduate and graduate students taking courses in financial engineering, statistics, quantitative finance, risk management, actuarial science, data science, and mathematics for AI, Financial Data Analytics with Machine Learning, Optimization and Statistics also belongs in the libraries of aspiring and practicing quantitative analysts working in commercial and investment banking.



From the Back Cover



PRAISE FOR
FINANCIAL DATA ANALYTICS

"Really interesting, and an impressive masterpiece! Financial Data Analytics contains a rich amount of material, with original research findings in almost every chapter; many parts of the book will even be directly helpful for my own teaching in business school. In view of its dedication towards data-driven analytical tools genuinely needed in financial problems, I believe that it is the very book that defines the scope of financial data analytics."
--Alain Bensoussan, Fellow of AMS, IEEE, and SIAM; President of INRIA (1984-1996); President of CNES (Centre National d'Etudes Spatiales) (1996-2003); Chairman of ESA Council (European Space Agency) (1999-2002); Former Member of Advisory Board, Mathematical Finance; Lars Magnus Ericsson Chair Professor of Management, Naveen Jindal School of Management, University of Texas at Dallas

"Financial Data Analytics is an exceptional book that integrates mathematics, practical examples, and real-life scenarios. With its focus on real datasets and practical programming codes in Python and R, the book offers a comprehensive exploration of various topics. It presents novel research findings and provides valuable insights for researchers, practitioners, and actuarial students. The book strikes a balance between foundational concepts and advanced techniques, making it an invaluable reference for professionals in the field ... By redefining the landscape of financial data analytics in FinTech and InsurTech, this book establishes itself as a trusted guide in the industry."
-- Simon Lam, Fellow of SOA, CFA, FRM; President of The Actuarial Society of Hong Kong (2018, 2023); Deputy CEO & General Manager, Munich Re (Hong Kong)

"The book will certainly play an impactful role in the advancement of financial analytics and should be on the bookshelf of every serious student of the topic."
-- Wai Keung Li, Fellow of Am. Stat. Assoc. and Inst. Math. Stat.; Emeritus Professor, The University of Hong Kong; Dean, Faculty of Liberal Arts and Social Sciences, The Education University of Hong Kong

"... The dual focus on theory and applications, together with the discussion on recent advancements of the fields, makes the book one of a kind, even field-defining, among books on similar topics, and an ideal resource for anyone interested in understanding and implementing statistical models in this era of big data, as well as for students preparing for professional examinations on data analytics, such as the SRM, PA and ATPA exams of the Society of Actuaries."
-- Ambrose Lo, Fellow of SOA, Chartered Enterprise Risk Analyst; Author of ACTEX Study Manual for SOA Exam SRM, ACTEX Study Manual for SOA Exam PA, and ACTEX Study Manual for SOA Exam ATPA

"... Financial Data Analytics is one comprehensive biblical handbook for academic researchers, financial practitioners, and graduate students for both methodologies and applications. The book also lays a systematic framework for future extension and enrichment for financial data analytics."
-- Nai-pan Tang, Former Chief Risk Officer and Member of Executive Committee, Hang Seng Bank; Former Deputy CEO and Chief Risk Officer, Shanghai Commercial Bank Ltd.; Former Director of the Board, Deputy CEO, Alternative CEO, Chief Risk Officer, and Vice Chairman of Asset Management, China CITIC Bank International; Director, The Hong Kong Institute of Bankers (2019-2021); Professor of Practice, Department of Finance, Chinese University of Hong Kong



About the Author



YONGZHAO CHEN (SAM) [BSC(ACTUARSC) & PHD (HKU)] is currently an Assistant Professor at the Department of Mathematics, Statistics and Insurance, The Hang Seng University of Hong Kong. His research interests include actuarial science, especially credibility theory, and data analytics.

KA CHUN CHEUNG [BSC(ACTUARSC) & PHD (HKU), ASA (SOA)] was the Director of the Actuarial Science Programme, and is currently Head and full Professor at the Department of Statistics and Actuarial Science in School of Computing and Data Science, The University of Hong Kong. His current research interests include various topics in actuarial science, including optimal reinsurance, stochastic orders, dependence structures, and extreme value theory.

PHILLIP YAM [BSC(ACTUARSC) & MPHIL (HKU), MAST (CANTAB), DPHIL (OXON)] is currently Director of QFRM programme, and a full Professor at the Department of Statistics of The Chinese University of Hong Kong, also Assistant Dean (Education) of CUHK Faculty of Science, and a Visiting Professor in Columbia University and UTD Business School. He has more than 100 top journal articles in actuarial science, applied mathematics, data analytics, engineering, financial mathematics, operations management, and statistics. His research project CIBer won a Silver Medal in the 48th International Exhibition of Inventions Geneva in 2023.

Dimensions (Overall): 9.3 Inches (H) x 6.9 Inches (W) x 1.9 Inches (D)
Weight: 2.65 Pounds
Suggested Age: 22 Years and Up
Number of Pages: 816
Genre: Business + Money Management
Sub-Genre: Finance
Series Title: Wiley Finance
Publisher: Wiley
Theme: Financial Engineering
Format: Hardcover
Author: Sam Chen & Ka Chun Cheung & Phillip Yam
Language: English
Street Date: November 13, 2024
TCIN: 90123008
UPC: 9781119863373
Item Number (DPCI): 247-27-0519
Origin: Made in the USA or Imported
If the item details above aren’t accurate or complete, we want to know about it.

Shipping details

Estimated ship dimensions: 1.9 inches length x 6.9 inches width x 9.3 inches height
Estimated ship weight: 2.65 pounds
We regret that this item cannot be shipped to PO Boxes.
This item cannot be shipped to the following locations: American Samoa (see also separate entry under AS), Guam (see also separate entry under GU), Northern Mariana Islands, Puerto Rico (see also separate entry under PR), United States Minor Outlying Islands, Virgin Islands, U.S., APO/FPO

Return details

This item can be returned to any Target store or Target.com.
This item must be returned within 90 days of the date it was purchased in store, shipped, delivered by a Shipt shopper, or made ready for pickup.
See the return policy for complete information.

Related Categories

Get top deals, latest trends, and more.

Privacy policy

Footer

About Us

About TargetCareersNews & BlogTarget BrandsBullseye ShopSustainability & GovernancePress CenterAdvertise with UsInvestorsAffiliates & PartnersSuppliersTargetPlus

Help

Target HelpReturnsTrack OrdersRecallsContact UsFeedbackAccessibilitySecurity & FraudTeam Member Services

Stores

Find a StoreClinicPharmacyOpticalMore In-Store Services

Services

Target Circle™Target Circle™ CardTarget Circle 360™Target AppRegistrySame Day DeliveryOrder PickupDrive UpFree 2-Day ShippingShipping & DeliveryMore Services
PinterestFacebookInstagramXYoutubeTiktokTermsCA Supply ChainPrivacyCA Privacy RightsYour Privacy ChoicesInterest Based AdsHealth Privacy Policy